
CSCI2510 Computer Organization

Lecture 11: Control Unit and

Instruction Encoding

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

Reading: Chap. 7.4~7.5 (5th Ed.)

mailto:mcyang@cse.cuhk.edu.hk

Recall: Components of a Processor

CSCI2510 Lec11: Control Unit and Instruction Encoding

Instruction

address

generator

PC

PC: Keep track of the

address of the next

instruction to be fetched

and executed

(special purpose register)

IR

IR: Hold the instruction

until its execution is

completed

(special purpose register)

Control

circuitry

Control circuitry:

Interpret or decode the

fetched instruction

Processor–memory interface

Processor-memory interface: Allow the

communication between processor and memory

Register

file

Register file: a

memory unit for the

processor’s general-

purpose registers

(GPRs)

ALU

Arithmetic and Logic

Unit (ALU): Perform

an arithmetic or logic

operation

2

Outline

• Control Signal Generation

1) Hard-wired Control

2) Micro-programmed Control

• Machine Instruction Encoding

CSCI2510 Lec11: Control Unit and Instruction Encoding 3

Control Signal Generation

• The processor must have some means to generate

the control signals for instruction execution:

1) Hard-wired control

2) Micro-programmed control

• Every control signals (e.g., PC-out, MDR-in, ADD,

SUB, …) are switched on (active) and off (inactive)

at suitable time.

– The time duration is determined by the clock.

CSCI2510 Lec11: Control Unit and Instruction Encoding 4

An example of

combinational logic gates.

1) Hard-wired Control

• Hard-wired Control:

The combinational logic

gates are used to

determine the sequence

of control signals:

– A counter is used keep

track of the control steps.

– Control signals are

functions of the IR,

external inputs and

condition codes

– The control signals are

produced at the right time

(i.e., control step).
CSCI2510 Lec11: Control Unit and Instruction Encoding

CLK
Clock

Decoder

&

Encoder

(combinational

logic gates)

Control step

counter

…

Condition

codes/ flags

External

inputs

e.g. MFC

…
…

IR
…

Control signals

…

5

1) Hard-wired Control (Cont’d)

• A simplified example:

CSCI2510 Lec11: Control Unit and Instruction Encoding

Decoder & Encoder

Control

Step

Counter

Control

Signals R
i-

in

R
i-

o
u

t

A
d
d

IR
-i

n

IR
-o

u
t

M
A

R
-i

n

M
D

R
-i

n

M
D

R
-o

u
t

P
C

-i
n

P
C

-o
u

t

In
c
P

C

R
e
a
d

T
E

M
P

-o
u

t

W
ri
te

https://people.cs.clemson.edu/~mark/uprog.html

Control signals

are switched on

at the right

control step (T0,

T1, T2, T3, …)

load
add

store
branch offset

Fetch Phase:

T0: PC-out, MAR-in

T1: Read, IncPC

T2: MDR-out, IR-in

Execution Phase:

…

6

1) Hard-wired Control (Cont’d)

• A simplified example:

CSCI2510 Lec11: Control Unit and Instruction Encoding

Decoder & Encoder

Control

Step

Counter

Control

Signals R
i-

in

R
i-

o
u

t

A
d
d

IR
-i

n

IR
-o

u
t

M
A

R
-i

n

M
D

R
-i

n

M
D

R
-o

u
t

P
C

-i
n

P
C

-o
u

t

In
c
P

C

R
e
a
d

T
E

M
P

-o
u

t

W
ri
te

https://people.cs.clemson.edu/~mark/uprog.html

IR needs to be decoded to

determine the instruction

load
add

store
branch offset

Fetch Phase:

…

Execution Phase:

T3: IR Decoding

T4~T7: Operation

(e.g., load)

Decode

7

Class Exercise 11.1

• The control sequences of different instructions may

consist of a different number of steps.

– For example, the load instruction is composed of 6 steps (3

for the fetch, 1 for the decode, and 3 for the execution).

• Can you tell how many control steps are required for

the other three instructions (i.e., add, store, and

branch) in the given simplified hard-wired control?

CSCI2510 Lec11: Control Unit and Instruction Encoding 8

Student ID:

Name:

Date:

Class Exercise 11.1

• A simplified example:

CSCI2510 Lec11: Control Unit and Instruction Encoding

Decoder & Encoder

Control

Step

Counter

Control

Signals R
i-

in

R
i-

o
u

t

A
d
d

IR
-i

n

IR
-o

u
t

M
A

R
-i

n

M
D

R
-i

n

M
D

R
-o

u
t

P
C

-i
n

P
C

-o
u

t

In
c
P

C

R
e
a
d

T
E

M
P

-o
u

t

W
ri
te

https://people.cs.clemson.edu/~mark/uprog.html

load
add

store
branch offset

Decode

9

1) Hard-wired Control (Cont’d)

• The wiring of the logic gates for control signal

generation is fixed.

– Simple signal:

• PC-out = T0

– Complicated signal :

• MDR-inE = ((IR == ADD) and ((T2) or (T5))) or

((IR == SUB) and ((T2) or (T5))) or

… CarryFlag or … and … or … and … and …

• The hard-wired control can operate at high speed.

• However, the hard-wired control has little flexibility.

– It can only implement instruction set of limited complexity.

CSCI2510 Lec11: Control Unit and Instruction Encoding 11

2) Micro-programmed Control

• The control signals are

generated by a micro-program.

• Every line is a control word.

• Micro-programs are stored in a

special memory (control store).

CSCI2510 Lec11: Control Unit and Instruction Encoding

P
C

in

P
C

o
u
t

M
A

R
in

R
e

a
d

M
D

R
o
u
t

IR
in

Y
in

S
e

le
c
t

A
d

d

Z
in

Z
o
u
t

R
1 o

u
t

R
1i

n

R
3o

u
t

W
M

F
C

E
n

d

0

1

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

0

1

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

1

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

Micro -
instruction

1

2

3

4

5

6

7

B
in

M
D

R
in

E

1

10

0

0

0

1

0

0

0

0

0

Control

word

, Bin

Ex: ADD R1, (R3)

, MDRinE

, MDRinE

, Bin

12

Micro-

Program

Class Exercise 11.2

• Please fill in the missing

control word in the below

micro-program for the

instruction ADD R1, (R3):

CSCI2510 Lec11: Control Unit and Instruction Encoding 13

P
C

in

P
C

o
u
t

M
A

R
in

R
e

a
d

M
D

R
o
u
t

IR
in

Y
in

S
e

le
c
t

A
d

d

Z
in

Z
o
u
t

R
1 o

u
t

R
1i

n

R
3o

u
t

W
M

F
C

E
n

d

0

1

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

0

1

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

1

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

Micro -
instruction

1

2

3

4

5

6

7

B
in

M
D

R
in

E

1

10

0

0

0

1

0

0

0

0

0

Control

word

, Bin

Ex: ADD R1, (R3)

, MDRinE

, MDRinE

, Bin

2) Micro-programmed Control (Cont’d)

CSCI2510 Lec11: Control Unit and Instruction Encoding

• A micro-program counter

(uPC) is used to read control

words sequentially from

control store.

 Whenever a new instruction

is loaded into IR, “Starting

Address Generator” loads the

starting address into uPC.

 uPC increments by clock,

causing successive micro-

instructions to be read out

from the control store.

 Control signals are generated

in the correct sequence

defined by a micro-program.

Control

word

15

2) Micro-programmed Control (Cont’d)

CSCI2510 Lec11: Control Unit and Instruction Encoding 16

Control
store

Clock

Starting

and

branch

address

generator

Condition

codes

inputs

External

Control

Word

IR

mPC

• The previous scheme

is not able to change

the control sequence

by other inputs.

– It cannot support

branch on condition

code (e.g. Jump if < 0)

• Starting and branch

address generator:

– Load new address into

uPC when instructed.

– Check condition codes

and external inputs

that can affect uPC.

2) Micro-programmed Control (Cont’d)

CSCI2510 Lec11: Control Unit and Instruction Encoding 17

Control
store

Clock

Starting

and

branch

address

generator

Condition

codes

inputs

External

Control

Word

IR

mPC

• uPC is incremented

every cycle except:

 When a new

instruction loaded into

IR, uPC is loaded with

starting address of the

micro-program.

 When taken branches,

uPC is updated with

the branch address.

 When taken END

micro-instruction, uPC

is reset.

Outline

• Control Signal Generation

1) Hard-wired Control

2) Micro-programmed Control

• Machine Instruction Encoding

CSCI2510 Lec11: Control Unit and Instruction Encoding 18

Machine Instruction Encoding

• An instruction must be

encoded in a compact

binary pattern.

• The decoder must

interpret (or decode) the

instruction, and generate

the control signals

correctly.

CSCI2510 Lec11: Control Unit and Instruction Encoding 19

CLK
Clock

Control step

counter

IR

Decoder

&

Encoder

Control signals

Condition

codes/ flags

External

inputs

e.g. MFC

…

…

…
…

…

Why Machine Instruction Encoding?

• We have a bunch of instructions:

– Such as add, subtract, move, shift, rotate, branch, etc.

• Instructions may use operands of different sizes.

– Such as 32-bit and 8-bit number, or 8-bit ASCII characters.

• Both the type of operation and the type of operands

need to be specified in encoded binary patterns.

– Type of Operation: Often referred to as the OP code.

• E.g., 8 bits can represent 256 different OP codes.

– Type of Operands: Addressing modes.

• An operand is the part of an instruction that specifies data to be

operating on or manipulated.

CSCI2510 Lec11: Control Unit and Instruction Encoding 20

Example: 8051/8052 OP Code Map

CSCI2510 Lec11: Control Unit and Instruction Encoding 21

• Addressing Modes: the ways for specifying the

locations of instruction operands.

CSCI2510 Lec04: Machine Instructions 22

Address Mode Assembler Syntax Addressing Function

1) Immediate #𝑉𝑎𝑙𝑢𝑒 𝑂𝑝𝑒𝑟𝑎𝑛𝑑 = 𝑉𝑎𝑙𝑢𝑒

2) Register 𝑅𝑖 𝐸𝐴 = 𝑅𝑖

3) Absolute 𝐿𝑂𝐶 𝐸𝐴 = 𝐿𝑂𝐶

4) Register indirect (𝑅𝑖) 𝐸𝐴 = [𝑅𝑖]

5) Index 𝑋(𝑅𝑖) 𝐸𝐴 = 𝑅𝑖 + 𝑋

6) Base with index (𝑅𝑖, 𝑅𝑗) 𝐸𝐴 = 𝑅𝑖 + [𝑅𝑗]

EA: effective address

Value: a signed number

X: index value

Recall: Type of Operands

One-word Instruction (1/2)

• Some instructions can be encoded in one 32-bit word:

– OP code: 8 bits

– Src and Dest: 3 bits (addressing mode) + 4 bits (register #)

– Other info: 10 bits (such as index value)

CSCI2510 Lec11: Control Unit and Instruction Encoding 23

OP code Source Dest Other info

3+4 103+48

• ADD R1, R2

– Needs to specify OP code,

SRC and DEST registers.

• 8 bits for OP code.

• 3 bits are needed for

addressing modes.

• 4 bits are required to

distinguish 16 registers.

• MOV R5, 24(R0)

– Needs to specify OP code,

two registers and an index

value of 24.

• 10 bits of other info can be

used for the index value.

One-word Instruction (2/2)

• Some instructions can be encoded in one 32-bit word:

– OP code: 8 bits

– Branch address: 24 bits

• Branch>0 Offset

– 8 bits for OP code

– 24 bits are left for the branch address.

• Question: How can we branch farther away using different
addressing modes?

CSCI2510 Lec11: Control Unit and Instruction Encoding 24

OP code Branch address

248

Two-word Instruction

• What if we want to specify a memory operand using

the absolute addressing mode?

MOV R2, LOC

– 8 bits for OP code, 3+4 bits for addressing mode and

register number for R2, 3 bits for addressing mode for LOC.

– Only 14 bits left for specifying the memory address.

• Some instructions need an additional word to contain

the absolute memory address or an immediate value:

– E.g., Add R2, FF000000h (immediate operand)

CSCI2510 Lec11: Control Unit and Instruction Encoding 25

Memory address / Immediate operand

OP code Source Dest Other info

Multi-word Instruction (1/2)

• What if we want to allow an instruction in which both

two operands can be specified using the absolute

addressing mode?

MOV LOC1, LOC2

• It becomes necessary to use two additional words for

the 32-bit addresses of the two operands ...

CSCI2510 Lec11: Control Unit and Instruction Encoding 26

Memory address / Immediate operand

OP code Source Dest Other info

Memory address / Immediate operand

Multi-word Instruction (2/2)

• If we allow instructions using two 32-bit direct

address operands, we need three words in total for

the instruction encoding scheme.

– E.g., MOV LOC1, LOC2

• Multiple length instructions are difficult to implement

with high clock rate.

– The design of the Instruction Register (IR) and the

Instruction Decoder will be complex.

– The Control Unit will be difficult to design.

• Shall we go for simple or complex?

CSCI2510 Lec11: Control Unit and Instruction Encoding 27

Recall: RISC vs. CISC Styles

CSCI2510 Lec04: Machine Instructions 28

RISC CISC

Simple addressing modes More complex addressing modes

All instructions fitting in a single word More complex instructions, where an

instruction may span multiple words

Fewer instructions in the instruction set,

and simpler addressing modes

Many instructions that implement complex

tasks, and complicated addressing modes

Arithmetic and logic operations that can

be performed only on operands in

processor registers

Arithmetic and logic operations that can

be performed on memory and register

operands

Don’t allow direct transfers from one

memory location to another
Note: Such transfers must take place via a processor register.

Possible to transfer from one memory

location to another by using a single Move

instruction

Programs that tend to be larger in size,

because more but simpler instructions are

needed to perform complex tasks

Programs that tend to be smaller in size,

because fewer but more complex

instructions are needed to perform

complex tasks

Simple instructions that are conducive to

fast execution by the processing unit using

techniques such as pipelining

CISC vs RISC

• CISC OR RISC?

– CISC machines usually require less instructions to do

something but have a lower clock rate …

– RISC machines require more instructions to do something

but have a higher clock rate…

• The Best of Both World: CISC WITH RISC

– Modern processors usually combine the strengths of both

CISC and RISC.

– E.g., a CISC design with a RISC core:

• Design a RISC-style core instruction decoder with high clock rates.

• Provide a rich set of CISC-style instructions and addressing modes

to assembly programmers.

CSCI2510 Lec11: Control Unit and Instruction Encoding 29

Summary

• Control Signal Generation

1) Hard-wired Control

2) Micro-programmed Control

• Machine Instruction Encoding

CSCI2510 Lec11: Control Unit and Instruction Encoding 30

