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Recall: Components of a Processor
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Outline

• Control Signal Generation

1) Hard-wired Control

2) Micro-programmed Control

• Machine Instruction Encoding
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Control Signal Generation

• The processor must have some means to generate 

the control signals for instruction execution:

1) Hard-wired control

2) Micro-programmed control

• Every control signals (e.g., PC-out, MDR-in, ADD, 

SUB, …) are switched on (active) and off (inactive)

at suitable time.

– The time duration is determined by the clock.
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An example of 

combinational logic gates.

1) Hard-wired Control

• Hard-wired Control:

The combinational logic 

gates are used to 

determine the sequence 

of control signals:

– A counter is used keep 

track of the control steps.

– Control signals are 

functions of the IR, 

external inputs and 

condition codes

– The control signals are 

produced at the right time

(i.e., control step).
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1) Hard-wired Control (Cont’d)

• A simplified example:
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Control signals 

are switched on 

at the right 

control step (T0, 

T1, T2, T3, …)

load
add

store
branch offset

Fetch Phase:

T0: PC-out, MAR-in 

T1: Read, IncPC

T2: MDR-out, IR-in 

Execution Phase:

…
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1) Hard-wired Control (Cont’d)

• A simplified example:
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IR needs to be decoded to 

determine the instruction

load
add

store
branch offset

Fetch Phase:

…

Execution Phase:

T3: IR Decoding

T4~T7: Operation

(e.g., load)

Decode
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Class Exercise 11.1

• The control sequences of different instructions may 

consist of a different number of steps.

– For example, the load instruction is composed of 6 steps (3 

for the fetch, 1 for the decode, and 3 for the execution).

• Can you tell how many control steps are required for 

the other three instructions (i.e., add, store, and 

branch) in the given simplified hard-wired control?
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Class Exercise 11.1

• A simplified example:
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1) Hard-wired Control (Cont’d)

• The wiring of the logic gates for control signal 

generation is fixed.

– Simple signal:

• PC-out = T0

– Complicated signal :

• MDR-inE = ((IR == ADD) and ((T2) or (T5))) or 

((IR == SUB) and ((T2) or (T5))) or

… CarryFlag or … and … or … and … and …

• The hard-wired control can operate at high speed.

• However, the hard-wired control has little flexibility.

– It can only implement instruction set of limited complexity.
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2) Micro-programmed Control

• The control signals are 

generated by a micro-program.

• Every line is a control word.

• Micro-programs are stored in a 

special memory (control store).
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Class Exercise 11.2

• Please fill in the missing 

control word in the below 

micro-program for the 

instruction ADD R1, (R3):
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2) Micro-programmed Control (Cont’d)
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• A micro-program counter 

(uPC) is used to read control 

words sequentially from 

control store.

 Whenever a new instruction 

is loaded into IR, “Starting 

Address Generator” loads the 

starting address into uPC.

 uPC increments by clock, 

causing successive micro-

instructions to be read out 

from the control store.

 Control signals are generated 

in the correct sequence

defined by a micro-program.

Control

word
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2) Micro-programmed Control (Cont’d)
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• The previous scheme 

is not able to change 

the control sequence 

by other inputs.

– It cannot support 

branch on condition 
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uPC when instructed.
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2) Micro-programmed Control (Cont’d)
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every cycle except:
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Outline

• Control Signal Generation

1) Hard-wired Control

2) Micro-programmed Control

• Machine Instruction Encoding
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Machine Instruction Encoding

• An instruction must be 

encoded in a compact 

binary pattern.

• The decoder must 

interpret (or decode) the 

instruction, and generate 

the control signals 

correctly.
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Why Machine Instruction Encoding?

• We have a bunch of instructions:

– Such as add, subtract, move, shift, rotate, branch, etc.

• Instructions may use operands of different sizes.

– Such as 32-bit and 8-bit number, or 8-bit ASCII characters.

• Both the type of operation and the type of operands

need to be specified in encoded binary patterns.

– Type of Operation: Often referred to as the OP code.

• E.g., 8 bits can represent 256 different OP codes.

– Type of Operands: Addressing modes.

• An operand is the part of an instruction that specifies data to be 

operating on or manipulated.
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Example: 8051/8052 OP Code Map
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• Addressing Modes: the ways for specifying the 

locations of instruction operands.
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Address Mode Assembler Syntax Addressing Function

1) Immediate #𝑉𝑎𝑙𝑢𝑒 𝑂𝑝𝑒𝑟𝑎𝑛𝑑 = 𝑉𝑎𝑙𝑢𝑒

2) Register 𝑅𝑖 𝐸𝐴 = 𝑅𝑖

3) Absolute 𝐿𝑂𝐶 𝐸𝐴 = 𝐿𝑂𝐶

4) Register indirect (𝑅𝑖) 𝐸𝐴 = [𝑅𝑖]

5) Index 𝑋(𝑅𝑖) 𝐸𝐴 = 𝑅𝑖 + 𝑋

6) Base with index (𝑅𝑖, 𝑅𝑗) 𝐸𝐴 = 𝑅𝑖 + [𝑅𝑗]

EA: effective address

Value: a signed number

X: index value

Recall: Type of Operands



One-word Instruction (1/2)

• Some instructions can be encoded in one 32-bit word:

– OP code: 8 bits

– Src and Dest: 3 bits (addressing mode) + 4 bits (register #)

– Other info: 10 bits (such as index value)
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OP code Source Dest Other info

3+4 103+48

• ADD  R1, R2

– Needs to specify OP code, 

SRC and DEST registers.

• 8 bits for OP code.

• 3 bits are needed for 

addressing modes.

• 4 bits are required to 

distinguish 16 registers.

• MOV  R5, 24(R0)

– Needs to specify OP code, 

two registers and an index 

value of 24.

• 10 bits of other info can be 

used for the index value.



One-word Instruction (2/2)

• Some instructions can be encoded in one 32-bit word:

– OP code: 8 bits

– Branch address: 24 bits

• Branch>0  Offset

– 8 bits for OP code

– 24 bits are left for the branch address.

• Question: How can we branch farther away using different 
addressing modes?
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OP code Branch address

248



Two-word Instruction

• What if we want to specify a memory operand using 

the absolute addressing mode?

MOV  R2, LOC

– 8 bits for OP code, 3+4 bits for addressing mode and 

register number for R2, 3 bits for addressing mode for LOC.

– Only 14 bits left for specifying the memory address.

• Some instructions need an additional word to contain 

the absolute memory address or an immediate value:

– E.g., Add  R2, FF000000h (immediate operand)
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Memory address / Immediate operand

OP code Source Dest Other info



Multi-word Instruction (1/2)

• What if we want to allow an instruction in which both 

two operands can be specified using the absolute 

addressing mode?

MOV  LOC1, LOC2

• It becomes necessary to use two additional words for 

the 32-bit addresses of the two operands ...
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Memory address / Immediate operand

OP code Source Dest Other info

Memory address / Immediate operand



Multi-word Instruction (2/2)

• If we allow instructions using two 32-bit direct 

address operands, we need three words in total for 

the instruction encoding scheme.

– E.g.,  MOV  LOC1, LOC2

• Multiple length instructions are difficult to implement 

with high clock rate.

– The design of the Instruction Register (IR) and the 

Instruction Decoder will be complex.

– The Control Unit will be difficult to design.

• Shall we go for simple or complex?
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Recall: RISC vs. CISC Styles
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RISC CISC

Simple addressing modes More complex addressing modes

All instructions fitting in a single word More complex instructions, where an 

instruction may span multiple words

Fewer instructions in the instruction set, 

and simpler addressing modes

Many instructions that implement complex 

tasks, and complicated addressing modes

Arithmetic and logic operations that can 

be performed only on operands in 

processor registers

Arithmetic and logic operations that can 

be performed on memory and register 

operands

Don’t allow direct transfers from one 

memory location to another 
Note: Such transfers must take place via a processor register.

Possible to transfer from one memory 

location to another by using a single Move 

instruction

Programs that tend to be larger in size, 

because more but simpler instructions are 

needed to perform complex tasks

Programs that tend to be smaller in size, 

because fewer but more complex 

instructions are needed to perform 

complex tasks

Simple instructions that are conducive to 

fast execution by the processing unit using 

techniques such as pipelining



CISC vs RISC

• CISC OR RISC?

– CISC machines usually require less instructions to do 

something but have a lower clock rate …

– RISC machines require more instructions to do something 

but have a higher clock rate…

• The Best of Both World: CISC WITH RISC

– Modern processors usually combine the strengths of both 

CISC and RISC.

– E.g., a CISC design with a RISC core:

• Design a RISC-style core instruction decoder with high clock rates.

• Provide a rich set of CISC-style instructions and addressing modes 

to assembly programmers.
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Summary

• Control Signal Generation

1) Hard-wired Control

2) Micro-programmed Control

• Machine Instruction Encoding
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